Internet **Association** of Australia

RFC 8950

An IXP Perspective

Matthew Kobayashi Peering Engineer

APIX 2025

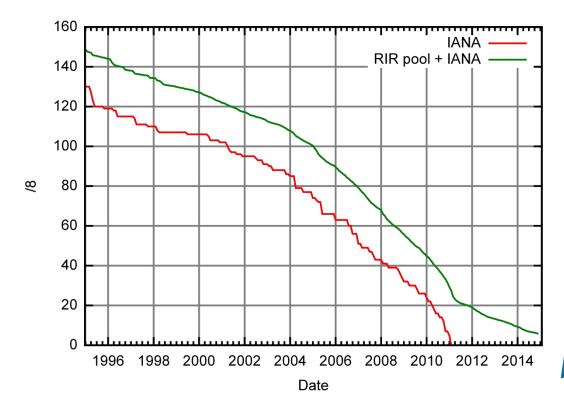
Introduction

- Peering Engineer at:
 - Internet Association of Australia (AS7606/AS10084)
 - New Zealand Internet Exchange (AS63830)
- Experience across the Australian telecommunications industry
 - o Optus
 - Alcatel PABX
 - Superloop
 - Megaport
 - IAA and NZIX

Internet Exchanges today

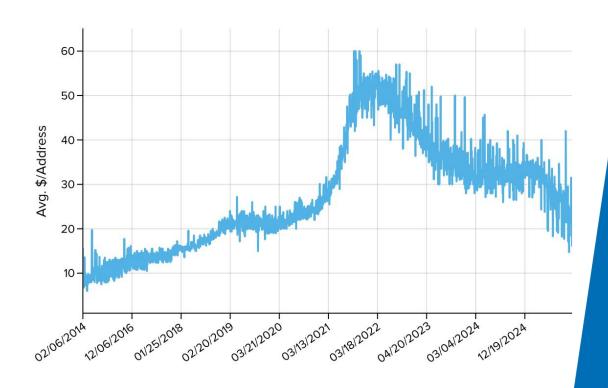
- Layer 2 fabric with Layer 3 route servers
 - o Some filters on peer ports to block problematic BUM traffic
 - ICMPv6 Router Advertisements
 - STP family
 - Etc.
- Increasingly becoming much more
 - Content delivery and caches
 - Private VLAN/VPWS services
 - Cloud on-ramps
 - o...and more

Internet Exchanges today


- Data plane is typically a L2VPN overlay
 - o VPLS
 - o VXLAN
 - o SR-MPLS
- Control plane separation (EVPN) is becoming the de facto standard
 - Enables techniques such as ARP suppression and multi-homing
- IPv4 and IPv6 dual-stack addressing
 - Public address space used to avoid conflicts with participants' internal RFC 1918 and RFC 6598 ranges
- BGP for advertising NLRI (Network Layer Reachability Information)

What's the problem?

- Unallocated public IPv4 space is dwindling
 - IANA (Internet Assigned Numbers Authority) allocated the last /8s to RIRs (Regional Internet Registries) in February 2011
 - RIRs progressively exhausted their IPv4 pools between 2011 and 2019
- IX growth continues, but additional IPv4 space is difficult to get from RIRs
 - Layer 2 fabric and single broadcast domain requires a contiguous IPv4 block, making the problem worse for IXPs


Free /8

What's the problem?

- Average private sale price of IPv4 space reached US\$60/address in late 2021
 - o Prices have trended down since then, roughly US\$25/address today
 - o The market is volatile, with a price spread of US\$27/address in the past month alone
 - Sale volumes of IPv4 space are steady, demand has not slowed
 - O Quite expensive, and a potential heavy burden on IXP budgets

RFC 8950

- Enables IPv4 NLRI advertisements with IPv6 next-hop via BGP
 - Fully interoperable with RFC 5549
- Currently requires IPv6 GUA (globally-unique address) per RFC 2545 Section 3
 - Unfortunately, we cannot use IPv6 link-local addressing (fe80::/10)
 - A Standards Track draft produced by the IETF Interdomain Routing working group aims to enable the use of IPv6 link-local addressing for NLRI next-hops

Software Support

Software	Minimum Version	Notes
BIRD	2.0.8	- Requires Linux kernel 5.2+
OpenBGPD	8.8	
ExaBGP	4.1.0	 Cannot program Linux netlinks for RFC 5549
FRRouting	7.0.0	 Requires Linux kernel 5.2+ Versions prior to 9.1.3 send ICMPv6 RAs if extended- nexthop is enabled
GoBGP	Any	

The Euro-IX RFC 8950 working group maintains a list of vendors with RFC 8950 support: https://github.com/euro-ix/rfc8950-ixp

Vendor Support

Vendor	NOS	Minimum Version
Arista	EOS	4.22.1F
Cisco	IOS-XR	7.3.3
Juniper	JUNOS	21.2
MikroTik	RouterOS	7.20beta5
Nokia	SR-OS	20.2.R1
Nokia	SR Linux	20.06
VyOS	VyOS	1.2.2

The Euro-IX RFC 8950 working group maintains a list of vendors with RFC 8950 support: https://github.com/euro-ix/rfc8950-ixp

Unsupported Vendors and Platforms

Vendor	NOS	Comments
Cisco	IOS-XE	
Cisco	NX-OS	Not Tested

The Euro-IX RFC 8950 working group maintains a list of vendors with RFC 8950 support: https://github.com/euro-ix/rfc8950-ixp

Final Thoughts

- Vendor support for RFC 8950 is widespread
 - Cisco being a notable exception
- IXPs should consider changing their policies
 - Update route server software to a version with RFC 8950 support
 - Only allocate IPv4 addresses to participants upon request
 - o Encourage participants to use RFC 8950 and return their allocated IPv4 address
 - Any policy changes should be weighed against participants' equipment support for RFC 8950
 - Participant MAC address OUIs can give a good passive indication
- Use of IPv6 link-local addressing for BGP NLRI next-hop may one day make IP allocation to participants unnecessary?

Questions?

